Global Warming

Global Warming

Global Warming

Global Warming

Global Warming

Global Warming

Global Warming

Global Warming

Global Warming

Global Warming

Thursday 18 August 2011

First complete map of Antarctica ice flow





[ First complete map of the speed and direction of ice flow in Antarctica, derived from radar interferometric data. Image credit: NASA/JPL-Caltech/UCI ]

08.18.11

By Alan Buis
NASA Jet Propulsion Laboratory


PASADENA, Calif. - NASA-funded researchers have created the first complete map of the speed and direction of ice flow in Antarctica. The map, which shows glaciers flowing thousands of miles from the continent's deep interior to its coast, will be critical for tracking future sea-level increases from climate change. The team created the map using integrated radar observations from a consortium of international satellites.

"This is like seeing a map of all the oceans' currents for the first time. It's a game changer for glaciology," said Eric Rignot of NASA's Jet Propulsion Laboratory in Pasadena, Calif., and the University of California (UC), Irvine. Rignot is lead author of a paper about the ice flow published online Thursday in Science Express. "We are seeing amazing flows from the heart of the continent that had never been described before."

Rignot and UC Irvine scientists Jeremie Mouginot and Bernd Scheuchl used billions of data points captured by European, Japanese and Canadian satellites to weed out cloud cover, solar glare and land features masking the glaciers. With the aid of NASA technology, the team painstakingly pieced together the shape and velocity of glacial formations, including the previously uncharted East Antarctica, which comprises 77 percent of the continent.

Like viewers of a completed jigsaw puzzle, the scientists were surprised when they stood back and took in the full picture. They discovered a new ridge splitting the 5.4 million-square-mile (14 million-square-kilometer) landmass from east to west.

The team also found unnamed formations moving up to 800 feet (244 meters) annually across immense plains sloping toward the Antarctic Ocean and in a different manner than past models of ice migration.

"The map points out something fundamentally new: that ice moves by slipping along the ground it rests on," said Thomas Wagner, NASA's cryospheric program scientist in Washington. "That's critical knowledge for predicting future sea level rise. It means that if we lose ice at the coasts from the warming ocean, we open the tap to massive amounts of ice in the interior."

The work was conducted in conjunction with the International Polar Year (IPY) (2007-2008). Collaborators worked under the IPY Space Task Group, which included NASA; the European Space Agency (ESA); Canadian Space Agency (CSA); Japan Aerospace Exploration Agency; the Alaska Satellite Facility in Fairbanks; and MacDonald, Dettwiler and Associates of Richmond, British Columbia, Canada. The map builds on partial charts of Antarctic ice flow created by NASA, CSA and ESA using different techniques.

"To our knowledge, this is the first time that a tightly knit collaboration of civilian space agencies has worked together to create such a huge dataset of this type," said Yves Crevier of CSA. "It is a dataset of lasting scientific value in assessing the extent and rate of change in polar regions."

More . . .  http://climate.nasa.gov/news/index.cfm?FuseAction=ShowNews&NewsID=567

Monday 15 August 2011

Tohoku tsunami created icebergs in Antarctica

Before (left) and after (right) photos of the Sulzberger Ice Shelf illustrate the calving event associated with the Japan earthquake and resulting tsunami that occurred on March 11, 2011. The icebergs have just begun to separate in the left image. Credit: European Space Agency/Envisat
08.15.11

By Patrick Lynch, NASA Goddard Space Flight Center
Steve Koppes, University of Chicago


A NASA scientist and her colleagues were able to observe for the first time the power of an earthquake and tsunami to break off large icebergs a hemisphere away.

Kelly Brunt, a cryosphere specialist at Goddard Space Flight Center, Greenbelt, Md., and colleagues were able to link the calving of icebergs from the Sulzberger Ice Shelf in Antarctica following the Tohoku Tsunami, which originated with an earthquake off the coast of Japan in March 2011. The finding, detailed in a paper published online today in the Journal of Glaciology, marks the first direct observation of such a connection between tsunamis and icebergs.

The birth of an iceberg can come about in any number of ways. Often, scientists will see the towering, frozen monoliths break into the polar seas and work backwards to figure out the cause.

So when the Tohoku Tsunami was triggered in the Pacific Ocean on March 11 this spring, Brunt and colleagues immediately looked south. All the way south. Using multiple satellite images, Brunt, Emile Okal at Northwestern University and Douglas MacAyeal at University of Chicago were able to observe new icebergs floating off to sea shortly after the sea swell of the tsunami reached Antarctica.

To put the dynamics of this event in perspective: An earthquake off the coast of Japan caused massive waves to explode out from its epicenter. Swells of water swarmed toward an ice shelf in Antarctica, 8,000 miles (13,600 km) away, and about 18 hours after the earthquake occurred, those waves broke off several chunks of ice that together equaled about two times the surface area of Manhattan. According to historical records, this particular piece of ice hadn't budged in at least 46 years before the tsunami came along.

And as all that was happening, scientists were able to watch the Antarctic ice shelves in as close to real-time as satellite imagery allows, and catch a glimpse of a new iceberg floating off into the Ross Sea.

"In the past we've had calving events where we've looked for the source. It's a reverse scenario – we see a calving and we go looking for a source," Brunt said. "We knew right away this was one of the biggest events in recent history – we knew there would be enough swell. And this time we had a source."

Scientists first speculated in the 1970s that repeated flexing of an ice shelf – a floating extension of a glacier or ice sheet that sits on land – by waves could cause icebergs to break off. Scientific papers in more recent years have used models and tide gauge measurements in an attempt to quantify the impact of sea swell on ice shelf fronts.

The swell was likely only about a foot high (30 cm) when it reached the Sulzberger shelf. But the consistency of the waves created enough stress to cause the calving. This particular stretch of floating ice shelf is about 260 feet (80 meters) thick, from its exposed surface to its submerged base.

When the earthquake happened, Okal immediately honed in on the vulnerable faces of the Antarctic continent. Using knowledge of iceberg calving and what a NOAA model showed of the tsunami's projected path across the unobstructed Pacific and Southern oceans, Okal, Brunt and MacAyeal began looking at what is called the Sulzberger Ice Shelf. The Sulzberger shelf faces Sulzberger Bay and New Zealand.

Through a fortuitous break in heavy cloud cover, Brunt spotted what appeared to be a new iceberg in MODerate Imaging Spectroradiometer (MODIS) data.






[Nearly 50 square miles of ice broke off the Sulzberger Ice Shelf on the coast of Antarctica, resulting from waves generated by the Tohoku earthquake and tsunami that struck Japan in March 2011]

"I didn't have strong expectations either way whether we'd be able to see something," Brunt said. "The fastest imagery I could get to was from MODIS Rapid Response, but it was pretty cloudy. So I was more pessimistic that it would be too cloudy and we couldn't see anything. Then, there was literally one image where the clouds cleared, and you could see a calving event."

A closer look with synthetic aperture radar data from the European Space Agency satellite, Envisat, which can penetrate clouds, found images of two moderate-sized icebergs – with more, smaller bergs in their wake. The largest iceberg was about four by six miles in surface area – itself about equal to the surface area of one Manhattan. All the ice surface together about equaled two Manhattans. After looking at historical satellite imagery, the group determined the small outcropping of ice had been there since at least 1965, when it was captured by USGS aerial photography.


[Thick cloud cover briefly fell away to reveal this first image of icebergs breaking away from the Sulzberger Ice Shelf due to sea swell from the Tohoku Tsunami, which had originated 8,000 miles away about 18 hours earlier. The icebergs can be seen behind a thin layer of clouds just off the ice shelf near the center of the image. Source: MODIS Rapid Response/NASA.]



The proof that seismic activity can cause Antarctic iceberg calving might shed some light on our knowledge of past events, Okal said.

"In September 1868, Chilean naval officers reported an unseasonal presence of large icebergs in the southernmost Pacific Ocean, and it was later speculated that they may have calved during the great Arica earthquake and tsunami a month earlier," Okal said. "We know now that this is a most probable scenario."

MacAyeal said the event is more proof of the interconnectedness of Earth systems.

"This is an example not only of the way in which events are connected across great ranges of oceanic distance, but also how events in one kind of Earth system, i.e., the plate tectonic system, can connect with another kind of seemingly unrelated event: the calving of icebergs from Antarctica's ice sheet," MacAyeal said.

In what could be one of the more lasting observations from this whole event, the bay in front of the Sulzberger shelf was largely lacking sea ice at the time of the tsunami. Sea ice is thought to help dampen swells that might cause this kind of calving. At the time of the Sumatra tsunami in 2004, the potentially vulnerable Antarctic fronts were buffered by a lot of sea ice, Brunt said, and scientists observed no calving events that they could tie to that tsunami.

"There are theories that sea ice can protect from calving. There was no sea ice in this case," Brunt said. "It’s a big chunk of ice that calved because of an earthquake 13,000 kilometers away. I think it's pretty cool."

And as all that was happening, scientists were able to watch the Antarctic ice shelves in as close to real-time as satellite imagery allows, and catch a glimpse of a new iceberg floating off into the Ross Sea.

More . . .    http://climate.nasa.gov/news/index.cfm?FuseAction=ShowNews&NewsID=565 

Tuesday 2 August 2011

Researchers document ice loss after Antarctic shelf collapse


[The Larsen B ice shelf began disintegrating around Jan. 31, 2002. Its eventual collapse into the Weddell Sea remains the largest in a series of Larsen ice shelf losses in recent decades, and a team of international scientists has now documented the continued glacier ice loss in the years following the dramatic event. NASA’s MODerate Imaging Spectroradiometer (MODIS) captured this image on Feb. 17, 2002. (Credit: MODIS, NASA's Earth Observatory)]

08.02.11

An international team of researchers has combined data from multiple sources to provide the clearest account yet of how much glacial ice surges into the sea following the collapse of Antarctic ice shelves.

The work by researchers at the University of Maryland, Baltimore County (UMBC), the Laboratoire d'Etudes en Géophysique et Océanographie Spatiales, Centre National de la Recherche Scientifique at the University of Toulouse, France, and the University of Colorado's National Snow and Ice Data Center, Boulder, Colo., details recent ice losses while promising to sharpen future predictions of further ice loss and sea level rise likely to result from ongoing changes along the Antarctic Peninsula.

"Not only do you get an initial loss of glacial ice when adjacent ice shelves collapse, but you get continued ice losses for many years – even decades – to come," says Christopher Shuman, a researcher at UMBC's Joint Center for Earth Systems Technology (JCET) at NASA's Goddard Space Flight Center, Greenbelt, Md. Shuman is lead author of the study published online July 25 in the Journal of Glaciology. "This further demonstrates how important ice shelves are to Antarctic glaciers."

An ice shelf is a thick floating tongue of ice, fed by a tributary glacier, extending into the sea off a land mass. Previous research showed that the recent collapse of several ice shelves in Antarctica led to acceleration of the glaciers that feed into them. Combining satellite data from NASA and the French space agency CNES, along with measurements collected during aircraft missions similar to ongoing NASA IceBridge flights, Shuman, Etienne Berthier, of the University of Toulouse, and Ted Scambos, of the University of Colorado, produced detailed ice loss maps from 2001 to 2009 for the main tributary glaciers of the Larsen A and B ice shelves, which collapsed in 1995 and 2002, respectively.

[The Landsat Image Mosaic of Antarctica (LIMA) provides this “flyover” view of the Larsen Ice Shelf’s long reach out into the Weddell Sea. (Credit: LIMA)]

"The approach we took drew on the strengths of each data source to produce the most complete picture yet of how these glaciers are changing," Berthier said, noting that the study relied on easy access to remote sensing information provided by NASA and CNES. The team used data from NASA sources including the MODerate Imaging Spectroradiometer (MODIS) instruments and the Ice, Cloud and land Elevation Satellite (ICESat).

The analysis reveals rapid elevation decreases of more than 500 feet for some glaciers, and it puts the total ice loss from 2001 to 2006 squarely between the widely varying and less certain estimates produced using an approach that relies on assumptions about a glacier's mass budget.

The authors' analysis shows ice loss in the study area of at least 11.2 gigatons (11.2 billion tons) per year from 2001 to 2006. Their ongoing work shows ice loss from 2006 to 2010 was almost as large, averaging 10.2 gigatons (10.2 billion tons) per year.

More . . .   http://climate.nasa.gov/news/index.cfm?FuseAction=ShowNews&NewsID=558

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More